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Supplementary Methods 

Pathological characterization 

Further pathological characterization of tumors in terms of histological type, cell 

differentiation, perineural invasion, vascular invasion, precursor lesions, growth pattern, 

tumor purity, presence of fibrotic tissue (0 = none; 1 = mild; 2 = moderate; 3 = marked) 

and presence of lymphocyte infiltration (0 = absence; 1 = minimal; 2 = mild; 3 = moderate; 

4 = severe; samples with staining between 0 and 2 were considered with low immune 

infiltration whereas 3 and 4 scores were classified as high immune infiltration) was 

conducted by 2 independent liver pathologists (W.Q.L. and C.M.) (Table 1, Table S1).  

RNA and DNA isolation 

Tumoral tissue sections were macro-dissected to avoid contamination of non-cancerous 

tissue. Total RNA was isolated from three freshly cut 5μm-thick FFPE sections using 

QIAcube (Qiagen). RNA quantity was assessed using Quant-iT Ribogreen RNA assay kit 

(Invitrogen). RNA quality was checked by real-time quantitative reverse transcription PCR 

(qRT-PCR) of RPL13A (cut-off Ct<28 cycles). Genomic DNA was isolated from seven 

freshly cut 5μm-thick FFPE sections using QIAcube (Qiagen). DNA quantity was 

assessed using a Quant-It PicoGreen dsDNA Assay kit (Invitrogen). To determine DNA 

quality, we used qRT-PCR of RNase P (Applied Biosystems).  

 

 



 3 

Whole-genome expression 

Unsupervised clustering  

Principal Component Analysis (PCA) was initially conducted in the whole eCCA cohort 

using the prcomp function from the R package stats v3.6.2 in order to obtain the 

distribution of samples depending on two principal components (Fig. S19). pCCA and 

dCCA were not differentially distributed in the plot, indicating that it was reasonable to 

group together these two anatomical locations of eCCA for the transcriptome-based 

molecular clustering. 

Non-negative matrix factorization (NMF) from NMFConsensus module in GenePattern[1] 

was employed to identify stable gene expression clusters. NMF parameters: k = 1 to k = 

5 clusters; number of clusterings to build consensus matrix = 20; number of iterations = 

2000; error function = Euclidean. In order to remove noise, the top 1696 most variable 

genes, identified with the Preprocess Dataset module in Genepattern[1], were used as 

input[2]. The preferred clustering result was determined using the observed cophenetic 

correlation, which measures the stability based on distances between clusters (Fig. 2A). 

Previous studies showed that transcriptome-based clustering was consistent 

independently of the exclusion of low purity samples[2]. No batch effect was observed 

between center of origin and molecular classes (Fig. 3A).  

One of the molecular classes obtained with unsupervised clustering presented 

overexpression of classic hepatocyte markers such as albumin, transferrin and CYP3A4 

(Fig. 2F). A similar finding was observed during the molecular classification of CCA 

conducted in the TCGA project[3]. However, they considered this expression profile as a 
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result of contamination by even a small amount of non-tumoral liver. To exclude that a 

potential hepatic contamination could be the determinant of this biological traits, we 

assessed hematoxylin and eosin slides to quantify the percentage of non-tumoral liver in 

our macro-dissected samples (Fig. S6A). Of the 182 samples with available 

transcriptome, 62 (34%) had >1% [range 1-40%] non-tumoral liver inside the macro-

dissected area, without a significant association with any molecular class despite a trend 

was observed in the Metabolic. Next, we repeated the unsupervised clustering in the 

eCCA cohort including only those samples without any non-tumoral liver in the slide (in 

and out the macro-dissected area) to grant exclusion of any potential hepatic 

contamination (n=93) (Fig. S6B). The four molecular classes obtained paralleled the ones 

obtained with the whole eCCA cohort. Specifically, 68% of the hallmarks defining each 

molecular class persisted significant even with a lower statistical power. Furthermore, to 

minimize the impact of non-tumoral liver expression from the transcriptome, we filtered 

out 386 liver-specific genes derived from the GTEx normal tissue expression database 

as was done in the TCGA study[3] (Fig. S6C). Unsupervised clustering in four molecular 

classes obtained an almost perfect overlap with the previously proposed classes (99% of 

the samples fell into the same class when these genes were subtracted). Finally, to 

determine a specific subset of genes particularly defining non-tumoral liver expression in 

our dataset we applied NMF to perform virtual microdissection of gene expression data 

as previously described[4]. A liver-related expression factor comprising 149 genes (Table 

S14) was unveiled by computing overlaps of selected genes with curated gene sets from 

MSigDB collections[5] (Table S15). Again, unsupervised clustering excluding these 149 
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genes obtained an almost perfect overlap with the previously proposed classes (97% of 

the samples fell into the same class) (Fig. S6D). 

Gene Set Enrichment Analysis 

Hallmark gene sets[5] from MSigDB collections, representing 50 well-defined biological 

states or processes collections, were evaluated using single-sample Gene Set 

Enrichment Analysis (ssGSEA) Projection from GenePattern[1]. Each enrichment score 

represents the degree of which the genes in a particular gene set are coordinately up- or 

down-regulated within a sample (Fig. 2B). 

Virtual microdissection of tumor-microenvironment using gene expression data was 

conducted using the Estimation of STromal and Immune cells in MAlignant Tumors 

(ESTIMATE) package[6]. This method based on ssGSEA algorithm allows the calculation 

of the stromal and immune compartment in tumoral tissue (Fig. 2D-E). 

The same ssGSEA tool and the Pan-cancer Immune Metagenes described in The Cancer 

Immunome Atlas[7] were used to estimate the infiltration in the tumors of 28 immune 

subpopulations including TILs as well as cell types related to innate immunity (Fig. 2C). 

The Tumor Immune Dysfunction and Exclusion (TIDE) transcriptome-based algorithm[8] 

was applied to quantify dysfunction and exclusion of infiltrating cytotoxic T lymphocytes 

(Fig. S13).  
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Upstream transcriptional regulators 

Genes differentially expressed between molecular classes (FDR<0.01) were identified 

with the Comparative Marker Selection module from GenePattern[1]. Ingenuity Pathway 

analysis software (Qiagen) was used for the inference of putative upstream regulators 

explaining the observed gene expression changes among the identified molecular 

classes (Table S8). 

Molecular class prediction 

Prediction in the eCCA cohort of previously reported mRNA-based molecular classes of 

CCA[9–11], hepatocellular carcinoma[12–14] and pancreatic adenocarcinoma[4,15] was 

performed using the Nearest Template Prediction method, as implemented in the specific 

module of GenePattern[1] (Fig. 3A). In addition, the similarity between transcriptome 

profiles of two independent data sets was analyzed with the SubMap module from 

GenePattern[1] (Fig. 3F-G). 

Gene expression signature design 

The Class Neighbors tool from GenePattern[1] was used to determine based on a signal-

to-noise distance function which genes were most closely correlated with a specific 

molecular class template and how significant the correlation was compared with random 

permutation versions of the phenotype (intersection of observed data with 1% significance 

level)[16]. The selection of up to 25, 50, 75 and 100 genes per class for the construction 

of the gene expression signature seemed likely to be large enough to be robust against 

noise and small enough to be applied in a clinical setting (Fig. S14). The accuracy of 
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gene-expression signatures was tested on the discovery data set using the Nearest 

Template Prediction method. 

Targeted DNA-sequencing 

Mutation calling and interpretation 

All sequenced genes had homogenous mean coverage allowing an unbiased 

interpretation of structural genomic aberrations (Fig. S20). Cancer-specific variant calling 

was performed with SNPPET algorithm (Agilent) and the following criteria: Variant score 

threshold = 0.3, minimum quality for base = 30, variant call quality threshold = 100, 

minimum allele frequency = 0.01, minimum number of reads supporting variant allele = 

10.  

Interpretation of variants was conducted by Cancer Genome Interpreter[17], a software 

that relies on existing knowledge collected from several resources (DoCM, ClinVar, 

OncoKB and IARC) and on a computational method that estimates the oncogenic effect 

of variants of uncertainty significance (OncodriveMUT). Candidate mutations were 

considered to be the ones already known to be oncogenic as well as the predicted drivers 

in Tier 1. Variants with an allele frequency lower than 5% were ultimately excluded in 

order to enrich the potential biological and clinical impact of results (Table S3). Accurate 

interpretation of PMS2 and KMT2C mutations was not feasible due to the interferences 

of pseudogenes (highly homologous sequences)[18]. The packages maftools and 

PathwayMapper were used for visualizing the data.  
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Copy number analysis 

In order to detect copy number variations (CNV) from the targeted DNA-sequencing 

panel, we used the multifactor normalization tool ONCOCNV[19] version 6.9, designed 

specifically for CNV analysis of amplicon panels. A total of 15 matched non-neoplastic 

bile ducts were used for normalization, and 150 tumors were evaluated. Focal 

amplifications were called at segments with ≥6 copies and homozygous deletions at 

segments with 0 copies[20] (Table S4).  

Immunohistochemistry 

HER2 evaluation was done according to the recommendations for its testing in breast 

cancer[21], being positive when IHC was 3+ (circumferential membrane staining that is 

complete, intense, and within > 10% of tumor cells). PD-1 positivity was defined by an 

unequivocal cytoplasmic staining of lymphocytes in >5% over the total number of intra-

tumoral lymphocytes[22]. PD-L1 positive samples were defined by unequivocal 

membranous staining of tumor cells or stromal cells in >1% over the total number of 

cells[23]. For α-SMA evaluation, the intensity of the staining in vascular smooth muscle 

cells was used as the reference staining value. α-SMA staining in tumor fibroblasts was 

qualitatively classified into 4 groups (0 = absence; 1 = much lower intensity; 2 = slightly 

lower intensity; 3 = equal intensity)[24]. Positive α-SMA was defined by ≥2 intensity in 

>50% of fibroblasts. Tumor testing for DNA MMR deficiency with immunohistochemistry 

for MMR proteins was conducted as recommended for screening of Lynch syndrome in 

hereditary nonpolyposis colorectal cancer[25]. Hep Par 1 and CK19 staining was 

qualitatively classified into 3 groups (0 = absence; 1 = low intensity; 2 = high intensity). 
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Positive Hep Par 1 and CK19 was defined by any positive intensity in >10% of tumoral 

cells. Ki67 percentage evaluation was determined in tumoral cells as previously described 

in breast cancer[26]. 

In situ hybridization 

FISH testing was performed on serially cut 3μm paraffin-embedded tissue sections to 

validate ERBB2 amplifications identified by DNA-targeted exome sequencing (Fig. S4). 

One slide was stained with H&E and reviewed by a pathologist to identify areas of 

tumor. The HER2 genetic testing was performed using the XL ERBB2 (HER2/NEU) amp 

probe (D-6010-100-OG, Metasystems, Altlußheim, Germany) according to the 

manufacturer’s instructions. Samples were analyzed independently by two evaluators 

using the platform slide scanning system Metafer version 3.5 (MetaSystems) combined 

with image analysis (MetaSystems). At least 20 neoplastic cells were examined for each 

sample. Amplification of HER2 was defined when the average copy number 

ratio, HER2/CEN17 was ≥ 2.0 or when the average of HER2 signals per nuclei was ≥ 6. 

ICGC and TCGA RNAseq analysis 

Regarding BTC-ICGC, in order to remove biases in downstream analysis caused by 

differences in sequencing depth, we computed sample normalization factors using 

edgeR[27] and scaled the library sizes accordingly. Specifically, we used the trimmed 

mean of M values (TMM method) for estimating the library size before scaling and then 

normalized by transcript length too, resulting in the RPKM matrix. One sample (BD20) 

was not successfully normalized. Data from HCC-TCGA and PDAC-TCGA were already 

normalized when downloaded at https://www.cbioportal.org. Prediction in the external 
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cohort of the eCCA classifier was performed using the Nearest Template Prediction 

method, as implemented in the specific module of GenePattern[1] (Fig. 4A, Fig. S16).  

TIGER-LC metabolomics analysis 

To better delineate metabolites defining the eCCA Metabolic class, we used gene 

expression data deposited in the NCBI GEO under accession code GSE76297 to infer 

hepatobiliary tumors (HCC and iCCA) from the TIGER-LC Consortium[28] recapitulating 

the proposed eCCA classes. Prediction in the external cohort of the eCCA classifier was 

performed using the Nearest Template Prediction method, as implemented in the specific 

module of GenePattern[1]. Metabolome data was obtained in 140 samples from 

Metabolon’s Discover HD4 Platform (718 metabolites). Metabolite Set Enrichment 

Analysis from MetaboAnalyst 4.0[29] was used to identify biologically meaningful patterns 

defined by the eCCA Metabolic class (Fig. S17). 

Ongoing clinical trials 

Data of ongoing clinical trials was obtained in March 2019 from the ClinicalTrials.gov 

database. Keyword searches for “cholangiocarcinoma” and “biliary tract cancer” were 

used to identify active clinical trials (recruiting, not yet recruiting, active, not recruiting, 

enrolling by invitation) assessing targeted therapies for advanced eCCA. Basket trials 

assessing solid tumors other than hepato-biliary-pancreatic tumors were excluded (Table 

S13). 
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Supplementary Figures 

 

Supplementary Fig. 1. Flow chart of the eCCA study. Samples from surgically 

resected eCCA were collected from 7 international centers and analyzed using whole-

genome expression, targeted DNA-sequencing and IHC/FISH. 
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Supplementary Fig. 2. Tumor mutational burden in eCCA. (A), Total number of 

mutations per eCCA sample ranked by their mutational burden (maximum = 18, minimum 

= 0, median = 2.37). Color of bars represents the type of structural genomic alteration: 

orange: missense; purple: nonsense; green: frameshift indel; blue: splice site. (B), 

Prevalence of type of structural genomic alteration in the eCCA cohort. c,Top 10 most 

frequently mutated genes and their co-occurrence or mutually exclusivity. P values were 

calculated using a two-sided Fisher’s exact test. 
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Supplementary Fig. 3. Distribution of mutations in KRAS, TP53, ARID1A and 

SMAD4. Mutation diagrams for the four most mutated genes in eCCA. Known or 

predicted driver mutations are visualized within the functional domains of the respective 

protein using maftools. 
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Supplementary Fig. 4. ERBB2 amplifications in eCCA by FISH. Focal amplifications 

of ERBB2 (segments with ≥6 copies) identified in two eCCA samples by targeted DNA-

sequencing and subsequent validation by FISH. 
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Supplementary Fig. 5. MMR repair deficiency in eCCA. Loss of expression of MMR 

proteins (MSH2 and MSH6) by IHC in three of the four eCCA samples with available 

tissue and with the presence of mutations in the same gene detected by targeted DNA-

sequencing.  
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Supplementary Fig. 6. Molecular eCCA classes and potential hepatic 

contamination. (A), Percentage of non-tumoral liver contamination in macro-dissected 

samples assessed from hematoxylin and eosin slides. P value was calculated using 
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Kruskal-Wallis Test. (B), Heatmap of hallmark gene sets from MSigDB collections in four 

molecular classes obtained from unsupervised clustering of eCCA samples without 

potential hepatic contamination (n=93). The four molecular classes resemble the 

proposed Metabolic, Proliferation, Mesenchymal and Immune classes obtained with the 

whole eCCA cohort (Fig. 1b). Single-sample Gene Set Enrichment Analysis (ssGSEA) 

was used to obtain the enrichment score, representing the degree of which the genes in 

a particular gene set are coordinately up- or down-regulated. Samples from the same 

molecular class were represented with a normalized enrichment score. P values between 

a specific molecular class and the rest were calculated using T-Test, being crossed cells 

lower than 0.05. (C), Enrichment plot of 386 liver-specific genes derived from the GTEx 

normal tissue expression database[3] in eCCA samples with potential hepatic 

contamination and transcriptome-based unsupervised classification of eCCA filtering out 

these genes. The four molecular classes identified have an almost perfect overlap with 

the previously proposed clustering using the whole transcriptome: One Proliferation class 

tumor classified now as a Metabolic class. (D), Enrichment plot of 149 liver genes 

identified by NMF in eCCA samples with potential hepatic contamination and 

transcriptome-based unsupervised classification of eCCA filtering out these genes. The 

four molecular classes identified have an almost perfect overlap with the previously 

proposed clustering using the whole transcriptome: Four Mesenchymal class tumors 

classified now as a Metabolic class; One Proliferation class tumor classified now as a 

Metabolic class; and one Immune class tumor classified now as Mesenchymal class. 

GSEA was used to obtain the enrichment plot. Unsupervised classification of eCCA was 

done by non-negative matrix factorization consensus. 
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Supplementary Fig. 7. Hep Par 1 and CK19 co-staining in Metabolic eCCA class. 

Hep Par 1 (hepatocyte marker) and CK19 (cholangiocyte maker) IHC was conducted on 

a subset of the eCCA cohort (n=53) including Metabolic (n=23) and non-Metabolic tumors 

(Proliferation=6, Mesenchymal=19 and Immune=5). All tumors (100%) had a positive 

staining for CK19. On the other hand, positive staining for Hep Par 1 was observed in 14 

tumors, most of them from the Metabolic class (Metabolic=43% vs Rest=13%, p=0.026). 

P value was calculated using a two-sided Fisher’s exact test. 
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Supplementary Fig. 8. Overexpressed genes defining eCCA molecular classes. 

Relative RNA expression of (A), Histone deacetylase 6 (HDAC6); (B), Periostin (POSTN); 

and (C), Casein kinase 2 (CSNK2A1) in the four molecular eCCA classes in comparison 

to normal bile duct. P values were calculated using a two-sided T-test. Error bars 

represent 95% confidence intervals. 
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Supplementary Fig. 9. Ki67 staining in eCCA tumors according to their molecular 

class. Ki67 IHC was conducted in the eCCA cohort (Metabolic=8, Proliferation=33, 

Mesenchymal=67 and Immune=21). (A) Representative samples of each molecular class 

together with paired CK19 staining. (B) Box plots representing Ki67 index for eCCA 

molecular classes showing the highest percentage of staining in the Proliferation class 

(p<0.001). P values between the Proliferation class and the rest were calculated using T-

Test.  
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Supplementary Fig. 10. Landscape of structural genomic alterations in eCCA 

molecular classes. Pathway diagrams showing the percentage of samples from each 

molecular class with structural genomic alterations in genes from RTK-RAS-PI3K, TP53-

RB, histone modification and TGFβ pathways. Red and blue mean alterations leading to 

activation or inactivation of the gene, respectively. 
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Supplementary Fig. 11. α-SMA and periostin in eCCA molecular classes. (A), Protein 

expression of α-SMA assessed by IHC. The total number of eCCA samples with a positive 

staining (≥2 intensity in >50% of fibroblasts) per molecular class is presented. (B), 

Absolute RNA expression of periostin depending on α-SMA positivity. Error bars 

represent 95% confidence intervals. 
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Supplementary Fig. 12. Clinical outcome of mesenchymal eCCA patients. Kaplan-

Meier curves comparing OS in the mesenchymal eCCA class vs rest in the: (A), internal; 

and (B), external (ICGC) eCCA cohorts. Log-rank test was used to analyze survival data. 
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Supplementary Fig. 13. T cell functionality in eCCA molecular classes. Box plots 

representing the estimation of: (A) T cell dysfunction; and (B) T cell exclusion in each 

eCCA molecular class using gene expression data (TIDE software). TIDE score (C) 

merges the weight of the two previous T cell categories in order to predict response to 

immune checkpoint inhibitors (low scores indicating high probability of clinical benefit). P 

values between the eCCA Immune class and the rest were calculated using T-Test. 
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Supplementary Fig. 14. Accuracy of gene-expression eCCA classifiers. Line graph 

representing the accuracy per class (true positives + true negatives / eCCA samples) of 

different proposed gene-expression classifiers based on the maximum number of genes 

used for defining each class (25, 50, 75 and 100). Precision refers to positive predictive 

value (number of true positives / number of positive calls). 
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Supplementary Fig. 15. External validation of biological features defining eCCA 

molecular classes. (A), Heatmap of hallmark gene sets from MSigDB collections in the 

four molecular classes of eCCA inferred in the external ICGC cohort of CCA. (B), 

Heatmap of immune subpopulations inferred by gene expression of immune metagenes 

described in The Cancer Immunome Atlas in the four molecular classes of eCCA inferred 

in the external ICGC cohort of CCA. P values between a specific molecular class and the 

rest were calculated using T-Test, being crossed cells lower than 0.05. 
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Supplementary Fig. 16. Distribution of eCCA molecular classes in HCC and PDAC. 

Prediction of eCCA molecular classes in samples from HCC-HEPTROMIC (n=228)[30],  

HCC-TCGA (n=362)[31] and PDAC-TCGA (n=177)[32] projects applying the 174-gene 

classifier. HCC: Hepatocellular carcinoma; PDAC: Pancreatic ductal adenocarcinoma. 
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Supplementary Fig. 17. Metabolite enrichment analysis of TIGER-LC Metabolic-like 

tumors. Of the 140 liver tumors (HCC and iCCA) with paired transcriptome-metabolome 

in the TIGER-LC Consortium, 50 (36%) had a transcriptomic profile resembling the eCCA 

Metabolic class. Up to 51 metabolites were significantly more abundant in these tumors 

in comparison to the rest (p<0.05, two-sided T-test). Using Metabolite Set Enrichment 

Analysis from MetaboAnalyst 4.0[29], a summary plot for Over Representation Analysis 

(ORA) was obtained. ORA was implemented using the hypergeometric test to evaluate 

whether a particular metabolite set is represented more than expected by chance within 

the given compound list. One-tailed p values are provided after adjusting for multiple 

testing. 

 



 29 

 

Supplementary Fig. 18. Differential abundance of triacylglycerol (TAG) species in 

eCCA cell lines. Heatmap showing relative levels of triacylglycerol (TAG) species in 4 

eCCA cell lines from the Cancer Cell Line Encyclopedia (CCLE). Using the eCCA gene-

expression classifier, SNU869, SNU245 and SNU478 resembled Metabolic, Proliferation 

and Mesenchymal eCCA classes, respectively. SNU869 Metabolic-like cell line presented 

high levels of monounsaturated fatty acids (MUFA) and low levels of polyunsaturated 

TAG, a pattern predicted to be sensitive to the loss of CTNNB1[33]. 
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Supplementary Fig. 19. Distribution of pCCA and dCCA samples after a Principal 

Component Analysis (PCA) with transcriptome data. The data was inputted to the 

prcomp function from the R package stats v3.6.2 to perform PCA after scaling variables 

to have unit variance and shifting them to be zero centered. The resulting distribution of 

the samples according to PC1 and PC2 was visualized using the R package ggbiplot 

v0.55. 
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Supplementary Fig. 20. Mean coverage per gene. Average read depth of the 72 genes 

analyzed by exome-sequencing in 150 eCCA tumoral samples. Genes are sorted 

alphabetically. 
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Supplementary Tables: 

Supplementary Table 1. Baseline characteristics of eCCA patients according to 

center of origin.  

 

Clinical annotation data for all patients and samples included in this study. Associations 

between categorical variables were analyzed by Fisher’s exact test. T-test was used for 

the comparison of categorical and continuous variables. HCV: Hepatitis C virus; HBV: 

Hepatitis B virus; NASH: Non-alcoholic steatohepatitis; BilIN: Biliary intraepithelial 

neoplasia; IPNB: intraductal papillary neoplasm of the bile duct. Non available in 1(15), 
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2(30), 3(52), 4(46), 5(27), 6(17), 7(31), 8(21), 9(22), 10(33), 11(34), 12(62), 13(78) and 14(95) 

patients. 15More than one possible. 
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Supplementary Table 2. Genes included in the targeted DNA-sequencing panel.  

 

Structural genomic alterations recurrently observed in BTC and specifically in eCCA 

based on bibliography[3,34–37]. *Due to clinical relevance, MMR genes were included 

despite being rarely mutated in BTC. 
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Supplementary Table 3. Driver mutations identified in eCCA.  
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Candidate mutations were the ones already known to be oncogenic as well as the 

predicted drivers in Tier 1 according to Cancer Genome Interpreter. 

 

 

 

 

 

 

 



 41 

Supplementary Table 4. Copy number alterations identified in eCCA.  

 

Copy number alterations were inferred from targeted DNA-sequencing panel using the 

multifactor normalization tool ONCOCNV. Focal amplifications were called at segments 

with ≥6 copies. 
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Supplementary Table 5. Prognosis of structural genetic alterations.  

Cox regression for overall survival (OS) of mutations / amplifications that were present in 

>5% of eCCA tumors. OS was defined as the time between surgical resection and death 

of any cause or lost follow-up. 
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Supplementary Table 6. Targeted therapies and their clinical evidence for the treatment of eCCA.  

Drug/biomarker pairs were categorized according to the OncoKB curated precision oncology knowledge base. The 

prevalence of each biomarker is based on the present study. *Evaluated in samples with mutations in MMR genes. NSCLC: 

Non-small cell lung carcinoma. 
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Supplementary Table 7. Risk factors and eCCA molecular classes.  

 

Distribution of known eCCA risk factors in each molecular class. 
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Supplementary Table 8. Upstream regulators of the transcriptome-based eCCA 

molecular classes.  

 

Top 10 activated upstream regulators in the four eCCA molecular classes. Genes 

differentially expressed between molecular classes (FDR<0.01) were identified with the 

Comparative Marker Selection module from GenePattern. Ingenuity Pathway analysis 

software was used for the inference of putative upstream regulators explaining the 

observed gene expression changes among the identified molecular classes. The overlap 
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p-value measures whether there is a statistically significant overlap between the dataset 

genes and the genes that are regulated by a transcriptional regulator. It is calculated using 

Fisher’s Exact Test. Activation z-score infer the activation states of predicted 

transcriptional regulators. 
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Supplementary Table 9. Compounds potentially effective for each eCCA molecular 

class.  
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Top up-regulated genes in each eCCA molecular class were used to identify perturbations 

(treatments with 2837 small molecules in 9 cancer cell lines)[38] that elicit opposed 

expression signatures (tau < -90). A tau of -90 indicates that only 10% of reference 

perturbations were more dissimilar to the query.  
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Supplementary Table 10. Prognostic factors in terms of overall survival in eCCA.  

Variables with p<0.05 in the univariate analysis were subsequently introduced in the 

stepwise multivariate model using Cox regression. Overall survival was defined as the 

time between surgical resection and death of any cause or lost follow-up. Patients with 

less than one month of follow-up (n=24) were excluded from the analysis of prognostic 

factors in order to minimize the effect of surgical complications as a determinant of clinical 

outcome. 
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Supplementary Table 11. eCCA classifier containing 174 genes.  

 

The Class Neighbors tool from GenePattern was used to determine based on a signal-

to-noise distance function which genes were most closely correlated with a specific 

molecular class template and how significant the correlation was compared with random 

permutation versions of the phenotype (intersection of observed data with 1% significance 

level). The 174-gene classifier -composed by a maximum of 50 genes defining each 

class- was able to assign eCCA samples to one of the four molecular classes with a global 

precision of 86% in our discovery eCCA cohort. 
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Supplementary Table 12. External validation of eCCA molecular classes in the 

ICGC cohort.  

 

Table S12

Sample Anatomical 
location

Inferred eCCA 
molecular class OS status OS days ERBB2 

mutation
BD109 iCCA Metabolic 0 380 Absent
BD111 iCCA Metabolic 1 681 Absent
BD125 iCCA Metabolic 1 1017 Absent
BD137 iCCA Metabolic 0 1150 Absent
BD15 iCCA Metabolic 1 181 Absent
BD151 iCCA Metabolic 0 419 Absent
BD159 iCCA Metabolic 0 503 Absent
BD165 iCCA Metabolic 0 358 Present
BD167 iCCA Metabolic 0 134 Absent
BD168 iCCA Metabolic 0 220 Absent
BD19 iCCA Metabolic 0 2382 Absent
BD210 iCCA Metabolic 0 59 Absent
BD212 iCCA Metabolic 1 694 Absent
BD218 iCCA Metabolic 0 601 Absent
BD231 iCCA Metabolic 1 648 Absent
BD237 iCCA Metabolic 0 3610 Absent
BD24 iCCA Metabolic 0 2284 Absent
BD242 iCCA Metabolic 0 2127 Absent
BD244 iCCA Metabolic 1 976 Absent
BD27 iCCA Metabolic 1 1849 Absent
BD318 iCCA Metabolic NA NA NA
BD36 iCCA Metabolic 0 2234 Absent
BD40 iCCA Metabolic 1 1791 Absent
BD42 iCCA Metabolic 0 3081 Absent
BD78 iCCA Metabolic 1 156 Absent
BD81 iCCA Metabolic 1 1905 Absent
BD95 iCCA Metabolic 0 2134 Absent
BD105 iCCA Proliferation 0 1981 Absent
BD114 iCCA Proliferation 1 181 Present
BD117 iCCA Proliferation 1 894 Absent
BD124 iCCA Proliferation 0 1266 Absent
BD132 iCCA Proliferation 1 445 Absent
BD134 iCCA Proliferation 1 90 Absent
BD141 iCCA Proliferation 0 1756 Absent
BD197 iCCA Proliferation 1 537 Absent
BD199 iCCA Proliferation 1 603 Absent
BD214 iCCA Proliferation 1 125 Absent
BD23 iCCA Proliferation 1 319 Absent
BD28 iCCA Proliferation 0 2204 Absent
BD29 iCCA Proliferation 1 53 Absent
BD308 iCCA Proliferation NA NA NA
BD334 iCCA Proliferation NA NA NA
BD46 iCCA Proliferation 1 1094 Absent
BD47 iCCA Proliferation 0 2914 Absent
BD57 iCCA Proliferation 0 2756 Absent
BD74 iCCA Proliferation 1 1627 Absent
BD8 iCCA Proliferation 0 2934 Absent
BD82 iCCA Proliferation 1 428 Present
BD84 iCCA Proliferation 0 1835 Absent
BD92 iCCA Proliferation 0 2172 Absent
BD104 iCCA Mesenchymal 1 168 Absent
BD118 iCCA Mesenchymal 1 851 Absent
BD129 iCCA Mesenchymal 1 386 Absent
BD135 iCCA Mesenchymal 0 1911 Absent
BD14 iCCA Mesenchymal 0 1624 Absent
BD143 iCCA Mesenchymal 0 162 Absent
BD147 iCCA Mesenchymal 0 83 Absent
BD148 iCCA Mesenchymal 0 264 Absent
BD149 iCCA Mesenchymal 0 403 Absent
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BD152 iCCA Mesenchymal 0 767 Absent
BD153 iCCA Mesenchymal 0 624 Absent
BD154 iCCA Mesenchymal 0 135 Absent
BD157 iCCA Mesenchymal 1 472 Absent
BD169 iCCA Mesenchymal 0 146 Absent
BD18 iCCA Mesenchymal 1 299 Absent
BD200 iCCA Mesenchymal 0 2259 Absent
BD226 iCCA Mesenchymal 0 916 Absent
BD247 iCCA Mesenchymal 0 72 Absent
BD3 iCCA Mesenchymal 0 166 Absent
BD30 iCCA Mesenchymal 0 2608 Absent
BD31 iCCA Mesenchymal 1 882 Absent
BD310 iCCA Mesenchymal NA NA NA
BD312 iCCA Mesenchymal NA NA NA
BD313 iCCA Mesenchymal NA NA NA
BD45 iCCA Mesenchymal 0 1977 Absent
BD5 iCCA Mesenchymal 0 3111 Absent
BD54 iCCA Mesenchymal 1 646 Absent
BD56 iCCA Mesenchymal 1 1380 Absent
BD80 iCCA Mesenchymal 1 181 Absent
BD97 iCCA Mesenchymal NA NA NA
BD138 iCCA Immune 1 4 Absent
BD140 iCCA Immune 1 264 Absent
BD146 iCCA Immune 0 670 Absent
BD150 iCCA Immune 0 582 Absent
BD195 iCCA Immune NA NA NA
BD219 iCCA Immune 0 1349 Absent
BD224 iCCA Immune 0 818 Absent
BD239 iCCA Immune 1 1128 Absent
BD6 iCCA Immune 1 784 Absent
BD87 iCCA Immune 0 762 Present
BD10 iCCA Unclassified 1 1153 Absent
BD101 iCCA Unclassified 1 1829 Absent
BD115 iCCA Unclassified 0 1604 Absent
BD12 iCCA Unclassified 1 532 Absent
BD121 iCCA Unclassified 0 1335 Absent
BD142 iCCA Unclassified 0 1068 Absent
BD196 iCCA Unclassified NA NA NA
BD201 iCCA Unclassified 1 1424 Absent
BD21 iCCA Unclassified 1 452 Absent
BD211 iCCA Unclassified 1 341 Absent
BD213 iCCA Unclassified 1 208 Absent
BD220 iCCA Unclassified 0 458 Absent
BD221 iCCA Unclassified 0 1013 Absent
BD222 iCCA Unclassified 0 1016 Absent
BD223 iCCA Unclassified 1 722 Absent
BD227 iCCA Unclassified 1 277 Absent
BD229 iCCA Unclassified 1 144 Absent
BD230 iCCA Unclassified 1 486 Absent
BD232 iCCA Unclassified 1 1428 Absent
BD233 iCCA Unclassified 1 196 Absent
BD234 iCCA Unclassified 1 218 Absent
BD243 iCCA Unclassified 1 334 Absent
BD25 iCCA Unclassified 1 402 Absent
BD32 iCCA Unclassified 1 749 Absent
BD33 iCCA Unclassified 1 574 Absent
BD38 iCCA Unclassified 1 712 Absent
BD41 iCCA Unclassified 1 654 Absent
BD72 iCCA Unclassified 1 474 Present
BD75 iCCA Unclassified 0 1825 Absent
BD79 iCCA Unclassified 0 1722 Absent
BD86 iCCA Unclassified 1 174 Absent
BD88 iCCA Unclassified 1 175 Absent
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BD11 pCCA Metabolic 1 583 Absent
BD112 pCCA Proliferation 0 1254 Absent
BD49 pCCA Proliferation 0 2879 Absent
BD53 pCCA Proliferation 0 1334 Absent
BD155 pCCA Mesenchymal 0 210 Absent
BD163 pCCA Mesenchymal 1 267 Absent
BD52 pCCA Mesenchymal 0 2776 Absent
BD9 pCCA Mesenchymal 0 1037 Absent
BD91 pCCA Mesenchymal 1 90 Absent
BD162 pCCA Unclassified 0 314 Absent
BD166 pCCA Unclassified 0 328 Absent
BD241 pCCA Unclassified 0 2118 Absent
BD34 pCCA Unclassified 0 355 Absent
BD306 dCCA Metabolic NA NA NA
BD13 dCCA Proliferation 0 2882 Present
BD158 dCCA Proliferation 0 477 Absent
BD16 dCCA Proliferation 1 489 Absent
BD207 dCCA Proliferation 0 68 Present
BD305 dCCA Proliferation NA NA NA
BD314 dCCA Proliferation NA NA NA
BD315 dCCA Proliferation NA NA NA
BD316 dCCA Proliferation NA NA NA
BD322 dCCA Proliferation NA NA NA
BD333 dCCA Proliferation NA NA NA
BD35 dCCA Proliferation 1 672 Absent
BD4 dCCA Proliferation 0 2547 Absent
BD48 dCCA Proliferation 0 2920 Absent
BD55 dCCA Proliferation 0 2725 Absent
BD7 dCCA Proliferation 0 3126 Absent
BD128 dCCA Mesenchymal 0 1436 Absent
BD160 dCCA Mesenchymal 1 34 Absent
BD319 dCCA Mesenchymal NA NA NA
BD122 dCCA Immune 0 887 Absent
BD161 dCCA Immune 0 388 Absent
BD317 dCCA Immune NA NA NA
BD205 dCCA Unclassified 0 83 Absent
BD321 dCCA Unclassified NA NA NA
BD336 dCCA Unclassified NA NA NA
BD37 dCCA Unclassified 1 389 Absent
BD170 GBC Unclassified 1 804 Absent
BD171 GBC Mesenchymal 1 297 Absent
BD172 GBC Mesenchymal 1 792 Absent
BD173 GBC Unclassified 1 384 Absent
BD175 GBC Unclassified 0 3365 Absent
BD176 GBC Proliferation 1 435 Absent
BD179 GBC Unclassified 1 92 Absent
BD180 GBC Proliferation 1 823 Present
BD182 GBC Unclassified 0 204 Absent
BD184 GBC Proliferation 0 2029 Absent
BD186 GBC Mesenchymal 0 1580 Absent
BD187 GBC Unclassified 0 1432 Absent
BD189 GBC Unclassified 1 704 Absent
BD190 GBC Unclassified 0 157 Absent
BD191 GBC Unclassified 1 328 Absent
BD192 GBC Unclassified 0 700 Absent
BD194 GBC Mesenchymal 0 79 Absent
BD202 GBC Unclassified 0 112 Absent
BD206 GBC Mesenchymal 0 99 Absent
BD335 GBC Proliferation NA NA NA
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Fastq files of RNAseq from 182 samples of biliary tract cancer (iCCA=122, pCCA=14, 

dCCA=26, GBC=20) were downloaded from the European Genome-phenome Archive. 

One sample (BD20) was not successfully normalized. Prediction in the external cohort of 

the eCCA classifier was performed using the Nearest Template Prediction method, as 

implemented in the specific module of GenePattern. We correlated the proposed 

molecular classes of eCCA (Metabolic, Proliferation, Mesenchymal and Immune) with 

clinical variables and non-silent somatic mutations analyzed by whole-exome sequencing 

and available at the International Cancer Genome Consortium (ICGC) Data portal. OS: 

Overall survival.  
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Supplementary Table 13. Ongoing clinical trials assessing targeted therapies in 

eCCA.  

 

Data of ongoing clinical trials was obtained in March 2019 from the ClinicalTrials.gov 

database. Keyword searches for “cholangiocarcinoma” and “biliary tract cancer” were 

used to identify active clinical trials (recruiting, not yet recruiting, active, not recruiting, 

enrolling by invitation) assessing targeted therapies for advanced eCCA. Basket trials 

assessing solid tumors other than hepato-biliary-pancreatic tumors were excluded. 

Biomarkers in italic are suggested based on the present study. *FGFR2 rearrangements 

exclusively detected in iCCA according to literature. 
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Supplementary Table 14. Expression factor comprising 149 genes identified by 

NMF in eCCA.  

 

The top 1696 most variable genes in our dataset identified with the Preprocess Dataset 

module in Genepattern underwent Non-negative matrix factorization (NMF) in order to 

perform virtual microdissection of gene expression data. A factor composed by 149 genes 

was identified and further characterized as explained in Supplementary Table 12. 

Gene ST6GAL1 ADH1B
HOMER2 APCS CYP2B6
VIL1 ITIH4 CFH

GABRB3 CYP1A2 PCK1
CMBL MAGI1 ASS1

FAM171A1 LOC100291873 C3
HPX UQCRFS1 FABP5

TTC39C GSTM1 CYP3A5
HMGN3 ITIH3 UGT2B7
PRDX2 PBLD MT1P3
SPINK1 UGT2B4 EPHX1
SSR2 SLC35C1 APOB
KRT18 SEPP1 CYP2B6
GGH HPS3 PLG
TFR2 CYP2A6 SORD
AHSG GOT1 FGFRL1
GYG2 AMY1A AGT
SAA1 MTHFD1 RBP4
FMO3 FGG AKR1C1
HNF4G CFB HAMP
GATM AQP9 SLC13A5
ARG1 ADH1A APOC3

CYP2D7P1 AZGP1 CBS
PLGLB2 A2M CPS1
CYP2C8 SLC22A1 CXADR
G6PC SERPINA6 KNG1
CTAGE5 DHCR24 DYNC1I2
ATF5 CP APOA1
HPD GC FABP1

CYP2C18 UGT1A10 CYP2E1
RNF5 ACADVL CRP

SLC47A1 APOC2 ORM1
TMEM176A CLU CYP4A11
DDTL MT1F FGB

LOC100291980 CDH2 TF
PXMP2 AKR1C2 AQP3
SEMA6A ITIH1 SERPINA3
PTPRF RPLP0 SCD
PRAP1 CYP4A11 APOC1
UGT2B10 CYP2A6 AKR1C1
TTR ALAS1 ALB

SERPINC1 SEBOX SERPINA1
APOH CYP3A7 ITIH2

ALDH4A1 C1RL HP
AKR1C3 MT1M MT1G
C9 VTN APOA2

SLC19A3 CD96 ADH1A
OCLN MT1JP DCAF6
AFF4 SC4MOL FGA

C19orf77 CYP3A4 ORM1
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Supplementary Table 15. Identification of a liver-related expression factor in eCCA.  

 

149 genes identified with Non-negative matrix factorization (NMF) were interrogated 

using curated gene sets from MSigDB collections. According to significant overlaps of 

selected genes, a liver-related expression factor was proposed. 
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